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Chapter 1

Introduction

More and more complex machine learning models get deployed with increasing frequency. Given

the momentous impact the widespread adoption of such highly accessible statistical models will

have on society calls for explainable and safe models are increasing. We have seen the recent

adoption of the Artificial Intelligence Act in the EU by the European Parliament (2024) and

in the US the Blueprint for an AI Bill of Rights The White House (2022). These legislative

efforts emphasise or require automatic explanations for deployments in high-risk contexts. For

practitioners working on models in healthcare, finance or justice further standards and scrutiny

frequently apply. Most crucially, users should have a clear, concise, prerequisite-free, and di-

gestible explanation of how their data is used and how the models achieve their results. If we

are to build the trust and discussion spaces needed for the long-term adoption of large statistical

implements.

Such developments have led to an explosion of work in Explainable Artificial Intelligence

(XAI). One of the more popular methods in the field is SHapley Additive exPlanation (SHAP)

Lundberg and Lee (2017). The method’s popularity can be largely attributed to its approach of

unifying several methods using the mathematics from cooperative game theory. The framing is

to view the explanation problem as a transferable utility game, with the features of the players

and the model under evaluation as the payoff function for the cooperation. This work follows

this philosophy adopting the concept of Winter values to provide explanations consistent with

finite nested partitions, levels structures, of the feature space. These Winter values are an ex-

tension of Owen values to levels structures, which themselves are an extension of Shapley values

to games with coalition structures. Such feature coalitions and nested coalitions represent re-

strictions to the interaction effects in the explanations. These are useful to keep perturbations

on manifold and therefore, useful for explaining multi-modal models. We develop a new com-

putation and implementation strategy for the Winter values. We conclude that Winter values

closely approximate the Shapley values using either clustering or custom levels structures. We

further showcase the robustness of the custom levels structures based Winter values to one form

of adversarial attacks aimed at concealing model biases.
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CHAPTER 1. INTRODUCTION 2

The remainder of this thesis is organized as follows. Chapter 2 contains a literature review,

reviews the context in XAI, other works on coalitional explanations, works using the Parti-

tionExplainer, and Winter values. Chapter 3 details the mathematical approach, and provides

examples of the computation, and the code used by the PartitionExplainer. Chapter 4 show-

cases several useful properties of the methods. Chapter 5 concludes and outlines steps and

directions for future research.

The developed exact method for Winter values is currently being merged into the open-

source SHAP library. All the code for the work presented can be found in this repository

https://github.com/CousinThrockmorton/shap.

https://github.com/CousinThrockmorton/shap


Chapter 2

Literature Review

2.1 Model Agnostic Explanation Methods

To situate this research within the field of model explainability we can turn to several taxonomies

such as Arrieta et al. (2020), Speith (2022), Schwalbe and Finzel (2023). Such categorisa-

tion all differentiate between transparent modelling methods and post-hoc explainable models.

Methods such as linear regression or decision trees are considered inherently explainable, and

interpretable, due to being decomposable with simple calculations used for imputation. More

complex models like neural networks or gradient-boosting models construct functions that can

be very large and therefore require explanation methods to describe them. Such post-hoc meth-

ods may rely on the form of the model they aim to explain these are model-specific methods or

they attempt to describe the functional space based on the in and outputs, called model agnos-

tic methods. Model agnostic methods became very popular since they can be applied to any

model, do not require retraining, do not affect performance, and can be used by a third party

to understand the model. The core idea behind these model-agnostic methods is to perturb the

model’s inputs to see how the model functions. This is usually done for a single data point,

hence they are dubbed local methods. These methods draw on the cooperative game theory

literature treating the model as a transferable utility cooperative game, features as players in

the game, and the output is the payoff.

One of the foundational works in this field is the Shapley value, a solution concept for such

cooperative games to fairly allocate the cooperation payoff Shapley et al. (1953). The value

assigns to each player their average marginal contribution over all possible permutations of

how the coalition can be formed. Following this, a wide variety of cooperative game theory

solution concepts have been developed. In this work, we will focus on the literature that ex-

amines games where not all coalitions can be formed stemming from Aumann and Dreze (1974).

Being defined on all the possible ways the coalitions can form, that is the input of the solu-

tion concepts is in 2P space therefore Deng and Papadimitriou (1994) argue:

3



CHAPTER 2. LITERATURE REVIEW 4

“There is a catch, however: If the game is defined by the coalition values, there may be little

to be said about the computational complexity of the various solution concepts, because the

input is already exponential in n, and thus, in most cases, the computational problems above

can be solved very ‘efficiently”.

Therefore, the computational burden associated with such explanations is considerable, es-

pecially for models with long imputation times. Nonetheless, there are several algorithms for

hierarchical coalition values with polynomial run time in the number of features Besner (2022).

2.2 The PartitionExplainer

Lundberg and Lee (2017) used this game theoretic understanding to unify several existing ap-

proaches namely LIME Ribeiro et al. (2016), DeepLIFT Shrikumar et al. (2017), Layer-Wise

Relevance propagation Bach et al. (2015) to one framework and library under the name SHapley

Additive exPlanation (SHAP). This approach established the library as one of the most popular

methods in XAI and was soon expanded with other game theory-based explanation methods

amongst them the PartitionExplainer. This method uses coalitions of features to reduce the

computational complexity of explanations and, for this is the default method for text and image

data in the current version of the SHAP library. As far as we know, there have been no studies

examining the logic and characteristics of the PartitionExplainer.

The PartitionExplainer is described in the SHAP documentation as a method that

”computes Shapley values recursively through a hierarchy of features, this hierarchy defines

feature coalitions and results in the Owen values from game theory.”.

Therefore, most studies use the PartitionExplainer due to its ability to group correlated

features. For example, for image classification Podgorelec et al. (2020), spurious correlation

detection on x-rays Sun et al. (2023), cell-penetrating peptides biochemical data Maroni et al.

(2024), predictive process monitoring Warmuth and Leopold (2022), text classification Gücükbel

(2023), mutual fund categorization with text data Vamvourellis et al. (2022) and many more.

There is an issue, however, with the SHAP documentation, as we will show later in Section 3,

the PartitionExplainer does not calculate the Owen values as described in Vamvourellis et al.

(2022), Gücükbel (2023) but one special case of Winter values. This confusion is likely due to

the Winter values frequently being described as the extension of Owen values to hierarchies or

recursive Owen values in the game theory literature.

Winter and Owen values provide coalitional values by considering a subset of all possible

permutations of features to those consistent with the coalition structure. In explainability, this
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is analogous to including knowledge of the feature interactions in the model in the explanation

method. For instance, we may know of the dependence structure of features and include this

knowledge to get more consistent explanations Heskes et al. (2020), Frye et al. (2019). However,

the causal dependence structure of the model for complex models is hard to come by in most

cases.

There are many situations where practitioners may know something less comprehensive

about the restrictions of feature interactions in the model. They may use inherently coalitional

data like biological-knowledge graphs Mart́ınez Mora et al. (2024). They develop coalitional-

based explanations for graph data analogous to the Owen values and call for future work on

Winter values-based explanations. Ferrettini et al. (2022) also develop explanations using Owen

values using various clustering methods such as PCA, VIF and Spearman correlation. Maybe

most interestingly we may know the model uses multi-modal data or an ensemble formulation.

Burton and Al Moubayed (2023) use this information to extend the SHAP library. They find

the clustering method of the PartitionExplainer lacking for text-tabular data as the correlations

may or may not respect the type difference. Their masker essentially calls the PartitionExplainer

separately for the tabular and text data providing more consistent explanations.

Other works have also explicitly called for the adoption of Winter values for model explain-

ability. Rozemberczki et al. (2022) discusses a wide variety of Shapley value-based explanations

and calls for coalition explanations. Patil and Främling (2023) discuss the use and interpre-

tation of intermediate concepts for explanations and develop coalitional explanations using an

alternate feature attribution strategy based on contextual importance and utility.

The SHAP method also received a fair amount of criticism in the form of a wide range

of adversarial methods designed to disguise the actual biased or unfair model behaviour from

an auditor using SHAP. This can be done via manipulating the model. Slack et al. (2020)

use a ”scaffolding” to detect the perturbations that often fall out of the base distribution of

the data and conceal the models’ bias. Dimanov et al. (2020) devise a new loss function to

retrain models with little change in accuracy and conceal dependence on unfair features. Or by

poisoning the data distribution Baniecki et al. (2022),Baniecki and Biecek (2022) or by biasing

the data sampling to cherry-pick samples for the explanations Laberge et al. (2022). However,

all of these methods assess their methods against some of the TreeExplainer, KernelExplainer

and ExactExplainer methods. As far as we are aware there have been no inquiries into the

robustness of the PartitionExplainer method of the SHAP library.

Contributions:

• Develop and adopt Winter values to explain machine learning models.

• Document the SHAP PartitionExplainer, a method for explanations under clustered bi-
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nary partition trees.

• Demonstrate use cases and properties of coalitional explanations.

• Set future research directions for model agnostic and coalition explanations.



Chapter 3

Methods

We will first introduce the mathematical formulation of the Shapley value, before discussing

coalitions and Owen values. Then nested coalition structures, level structures, and their inter-

pretation at last the resulting Winter values. We will then develop several simple illustrative

examples of the calculation and characteristics of the value.

In this section we will follow the notation and formulation of Winter (2002) with some slight

modifications for the language of machine learning explainability. Let the set of players, from

now on dubbed the features of the model, be P = {1,2,3,..,n}. The payoff function of the game,

the model we aim to explain, f, is a function from the set of all possible coalitions Π = 2P to

the set of real numbers R. The additive feature attribution of interest ϕ assigns to each model

f a vector of payoffs ϕ(f) = {ϕ1, ϕ2, ..., ϕn} in Rn. Then, feature i ’s measure of influence on the

model f we denote by ϕi(f).

3.1 The Shapley value

The Shapley value assigns the marginal contribution to each feature in the model with respect

to a uniform distribution over all possible permutations of features Π. Writing a permutation of

the features πϵΠ as a function P→ P. For each feature i we will denote piπ = {j : π(i) > π(j)} as
the set of all features preceding i in the order π. Using this we define the marginal contribution

of feature i to the permutation π as f(piπ ∪ i) − f(piπ). The definition of Shapley value is the

following:

ϕi(f) =
1

|P|!
∑
πϵΠ

[f(piπ ∪ i)− f(piπ)]. (3.1)

The formula is quite intuitive summing over every possible permutation of the features av-

eraging the marginal contribution of features.

7
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We can formulate an equivalent equation as in the original Shapley paper Shapley et al.

(1953) using the subset notation S ⊆ P for coalitions instead of permutations.

ϕi(f) =
∑

S⊆P,S∋i

1

|P|
1(|P|−1
|S|

) [f(S ∪ {i})− f(S)]. (3.2)

This formulation is more useful for the practical computation of explanations. However,

the most useful is the axiomatic formulation that guarantees several useful properties for the

results. Four axioms of (1) efficiency, (2) symmetry, (3) dummy, and (4) additivity uniquely

characterise the above Shapley values.

Efficiency requires that the explanation values for the features precisely distribute the entire

prediction value of the model.

EFFICIENCY.
∑

iϵN ϕi(f) = f(N).

The notion of symmetry we will be using is the following: The features i, j ∈ P are consid-

ered symmetric with respect to the model f if their marginal contribution is the same to any

coalition. That is ∀S ⊂ P with i, j /∈ S, f(S ∪ i) = f(S ∪ j).

SYMMETRY. If features i and j are symmetric with respect to model f, then ϕi(f ) =

ϕj(f ).

The Dummy axiom requires zero value attributed to features whose marginal contribution

is zero for every coalition.

DUMMY. If i is a dummy feature, f(S ∪ i)− f(S) = 0, ∀S ⊂ P, then ϕi(f ) = 0.

The value also is required to be additive on the space of all models.

ADDITIVITY. ϕ(f + g) = ϕ(f) + ϕ(g), where the model f + g is defined by (f + g)(S) =

f(S) + g(S) ∀S.

These axioms uniquely characterise the Shapley value in equation 3.1, 3.2. For proof of

uniqueness see Winter (2002). These axioms are intuitive and general and therefore, can be

applied to any model on any feature space resulting in comparable model-agnostic explanations.
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3.2 Level Structures, The Owen value Owen (1977)

The knowledge of feature interactions can be described via coalitions of features, or nested

coalitions of features, called levels structure. To start off, consider the set of features P parti-

tioned into groups according to coalition structure B = (S1, ...,Sm), that is
⋃
Sj = P and Si∩Sj

for i ̸= j. We can then think of the set of orders Π(B) by ordering the groups and then the

components of the groups. Formally, Π(B) = {π ∈ Π; if i, j ∈ Sk and π(i) < π(r) < π(j), then

r ∈ Sk} is the set of all permutations consistent with B.

The Owen value of feature i in the model f with coalition structure B is given by:

ϕi(f,B) =
1

|Π(B)|
∑

πϵΠ(B)

[f(piπ ∪ i)− f(piπ)]. (3.3)

The benefit of this formulation is reducing the number of elements in the sum from Ω(2|P|−1)

for a single feature for Shapley values to Ω(2|Si|+m−1) where |Si| is the number of features in the

coalition containing i and m the number of coalitions in B. For Owen values too we can write

the formula using the coalitions.

ϕi(f,B) =
∑

S⊆P\{j}

∑
T⊆Sj\{i}

1

|P |
1(|P |−1
|S|

) × 1

|Sj |
1(|Sj |−1
|T |

) [v(S ∪ T ∪ {i})− v(S ∪ T )] , (3.4)

In this formulation we sum over all other coalitions the feature is not part of at some level of

the partition tree S ⊆ P\{j} and over all other coalitions in the features ”own” group T ⊆ Sj\i.
If we examine the ”weights” applied to the marginals we can see that these are simply the

binomial coefficients for the features/coalitions.

3.3 The Winter value Winter (1989)

We can further stack these partitions B = (B1,B2, ...,Bm) such that Bi is a refinement of Bi+1,

specifically if S ∈ Bi, then S ⊂ T for some T ∈ Bi+1.

We can interpret such level structures as representing the strength of relationships between

features. This means that Bm the coarsest partition has the weakest relations and B1 the

strongest relationship between features. There are numerous examples we can give for such

relationships. In the game theory literature Winter (1989) used trade relationships to describe

levels structures where Bm describes free trade agreements, then lower levels Bm−1 describes the

forming countries, then states, regions, municipalities and so on. We can also draw a parallel

between levels structures and partonomies or meronomies from linguistics describing part-whole

relationships. We can also think of various graph, subgraph structures as financial, biological or

social networks. Therefore, the levels structures can encode the correlation, and computational

relations known about the structure of the model f, broader than a strict dependence structure.
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We can then make payoffs dependent on the cooperation structure described by thinking of

the permutations Π as the order features collect their payoffs. We will only consider orders in

which no feature i follows player j if there is another feature k who is ”closer” to feature i and

hasn’t appeared yet.

For a given level structure B = (B1,B2, ...,Bm), define.

Πm = {π ∈ Π; for each l, j ∈ S ∈ Bm and i ∈ N, π(l) < π(i) < π(j) implies i ∈ S}

and,

Πr = {π ∈ Πr+1; for each l, j ∈ S ∈ Br and i ∈ N, π(l) < π(i) < π(j) implies i ∈ S}.

Meaning we permute the top level Bm coalitions first then lower levels successively with Π1

containing all permutations consistent with B. This construction also results in the total payoffs

for a coalition at a level that is independent of any coalition structures at the lower levels, see

Theorem 3. Winter (1989).

The Winter value then can be written as:

ϕi(f,B) =
1

|Π1|
∑
πϵΠ1

[f(piπ ∪ i)− f(piπ)] (3.5)

In the coalitional formulation, the only difference from the Owen value is that it is defined

over multiple layers of nested coalitions.

ϕi(f,B) =
∑

S⊆Bj+1\{j}

∑
T⊆Bj\{i}

1

|Bj+1|
1(|Bj+1|−1
|S|

) × 1

|Bj |
1(|Bj |−1
|T |

) [v(S ∪ T ∪ {i})− v(S ∪ T )] .

(3.6)

The Winter value relaxes the symmetry axiom of the Shapley value and in their place posits

two axioms for individual features and coalitions.

INDIVIDUAL SYMMETRY. If k and j are two symmetric features with respect to the

model f, where every level 1 ≤ i ≤ m, and any non-singleton coalition S ∈ B1 then k ∈ S if

j ∈ S, and ϕi(B, f) = ϕj(B, f) . Note the symmetry individual symmetry axiom can be removed

if the last layer is of the individual features B1 = ({1}, {2}, ..., {n}).

COALITIONAL SYMMETRY. Let B = (B1,B2, ...,Bm) be a levels structure. For each

level 1 ≤ i ≤ m if [S], [T] ∈ [Bi] are symmetric features in the model ([Bi], F
i) and S,T are

subsets of the same coalition in Bj for j > i then
∑

r∈S ϕr(B, f) =
∑

r∈T ϕr(B, f)
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3.4 Illustrative Examples - Winter values

As an illustrative example let’s consider a machine learning model for a dating app. The model

consumes multiple types of data that we will consider to be singular features, for simplicity,

of the user’s pictures, location data, text prompts, and other characteristics and preferences.

In this case explainability is important for developers wanting to improve model behaviour,

regulators aiming to ensure safety, fairness, and privacy of users, or the company wanting to

provide customers with advice on how to use their algorithm.

First, we will illustrate how the coalitional explanations offer more consistent intuitive ex-

planations in the case of related features. Consider the game behind the explanations for the

images for a second in Figure 3.1. The images are comprised of a complex set of features ex-

tracted via convolution in most machine-learning applications, shown as shutters here. Other

potential features are represented by the data symbol the chip symbol at the root represents the

overall model. For simplicity let’s consider the model where features 1, and 2 are substitutable

for each other as is often the case for most image models.

Figure 3.1: The computation of coalitional values

(a) Shapley values calculation (b) Owen values calculation

Figure 3.2: Calculations for Shapley vs. coalitional values
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Applying the Shapley values in Figure 3.2 it is simple to see that it assigns ϕ1 = ϕ2 = 1
6 ,

due to symmetry, and ϕ3 = 2
3 and due to additivity the value for the images is 1

3 . The coali-

tional value, for this simple case the Owen value, takes the coalition structure into account by

”removing the bottom nodes”. The game between coalitions, on the right, now gives ϕ4 = 1
2

and ϕ3 = 1
2 and ϕ1 = ϕ2 = 1

4 . We would argue that the coalitional value for this model is

more consistent with the model’s functioning and intuition than the Shapley values. Moreover,

investigating the monotonicity of such solution concepts Young (1985) conclude that most other

them do not diverge far from the Shapley values.

Now, consider providing an explanation via Shapley values practitioners put all features

regardless of type, on a level playing field. Calculating the marginal contribution of each feature

to all other possible feature coalitions is shown in Figure 3.3.

Figure 3.3: The computation of the Shapley value for the dating app model

Not only can these perturbations create non-sensical, off-manifold data instances. But most

machine learning models capture a complex set of feature relations, independence of features

is the exception, and this is even more likely to be the case between different types of data.

Providing explanations via Shapley values then would result in biased explanations. Consider,

for instance the image data in this case may be undervalued as its marginal contribution is

likely to be small with respect to non-image data resulting in a lower value.

Now, let us consider Owen values with coalition structure first shown in 3.4. With a simple

partition of the feature space, for example, we may know that images are processed via a

surrogate model. Using this information we can reason that most marginal values for the

overall value result in very similar values, so there is no need to consider those marginals.
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Figure 3.4: Computation for the Owen values for two features

We can think of the computation of the images as modifying the weights on the marginals

so as to consider only relevant marginal effects. Not only does this reduce the number of calcu-

lations but the permutations used are more likely to ”make sense” that is, be closer to the base

distribution used for training.

For levels structures, we are considering two subsets, all the sibling nodes on the path,

and all the sibling coalitions/features of the feature/coalition of interest. This can be neatly

illustrated on a n-ary tree as shown in Besner (2022)

Figure 3.5: The relevant coalitions for nested Owen Levels values, that is Winter values Besner

(2022)

In our example, for the location data, this is considering the images as out of coalition

features and the text and tabular data as local coalition features, therefore calculating the

marginals of the product between the power sets of these two groups.
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Figure 3.6: Computation for the Winter values for two features

3.5 Computation of the clustering method

To illustrate the working of the clustering method we will examine the Simple California Demo

one of the model agnostic SHAP example notebooks using the PartitionExplainer on the scikit

learn dataset of the median house prices of districts in California Pace and Barry (1997). The

dataset has 8 features longitude, latitude, median income, population, average number of rooms,

bedrooms, and occupancy of districts. The PartitionExplainer using the default option uses the

correlation distances to create a binary tree of coalitions Figure 3.7.

Figure 3.7: The binary clustering tree of the California housing features constructed by pdist

from scipy

The clustering method for which the pseudo-code is shown in Programs ?? traverses the

tree and calculates the Winter values. The recursive function traverses the binary tree creating

the masks in batches by adding the left and right children’s masks to the mask of the current

node and the base array of all features turned off.

We take a look at the first three iterations of the clustering method to understand how the

value gets calculated. In all cases we start the loop with all features turned off, we call this the

null mask.

[
MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude Longitude

o o o o o o o o

]

https://github.com/shap/shap/blob/master/notebooks/tabular_examples/model_agnostic/Simple%20California%20Demo.ipynb
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html
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Then we turn on the features on the left and right of the node. See these printed on the

right and left side of the matrix, x’s corresponding to the active features and o’s to the masked

features.

[
x o o o x x o x o x x x o o x o

]
As the clustering method uses a binary tree proceeding for every node on the null mask

and the left and right children will generate all possible combinations of masks as the possible

permutations are also binary. The binary tree also guarantees that every resulting mask will be

unique. 
o x x x x o x x x x x x o x x o

o o o o x o o x x o o o o x o o

x x o o x x o x x o x x x x x x

o x o o o o o o o o x x o o x o

 .

Here the colours correspond to the ”lineage” of the masks, red corresponds to the null

mask, blue the right and black the left sub-tree. The clustering method is further parame-

terised by the fixed context parameter that restricts recursion to proceed only on the null

mask (fixed context = 0) or the children nodes (fixed context = 1). This way the resulting

values can be considered the feature being ”present” and ”absent” respectively.

The clustering method uses the distance from the clustering hierarchy to tell if a leaf is

reached and calculates the average marginals that sum up to the winter values. Since every

level adds 2 nodes the weights for each level correspond to a simple average. Using the cluster-

ing distance also allows for early stopping behaviour as users can modify the distance matrix

to negative values which terminates the descent to the nodes below. Then the lower credit

function is used to spread the attribution equally between constituent features.

As the tree is binary at worst for balanced clustering guarantees quadratic exact runtime,

uses batching, parallel processing, and the fixed context option the clustering method is highly

efficient for large feature sets. Hence it’s used as the default explanation method for text

and image data. However, it is not possible to calculate Winter values for non-binary levels

structures using this method. Moreover, it is tedious to input domain knowledge even in those

cases when the levels structures happen to be binary.

3.6 Computation of the partition method

To be able to encode domain knowledge of the structure of the model we will be using a native

Python class for n-ary trees populated via nested dictionaries of the coalitions with the features

as leaves. We have also decided to encode all level-specific information in the n-ary tree object.
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That is each node in the class has four attributes, first its name, second all of its children, third

the power set of its sibling nodes, and fourth the weights for every element of the power set i.e.

the binomial coefficients. This is done for quick retrieval and in order to save computational

resources during tree traversal.

The current implementation of the Winter values utilises Python’s itertools and separates

computing the weights and the marginals from the model calls. Itertools is used as it allows

for efficient computation of Cartesian products. The computation of the values is done through

the following steps. For complete pseudo-code please see Programs ??.

• Depth-first traversal of the n-ary tree. We recursively collect all the paths to the leaves

along with all the power sets of sibling nodes and weights on the path.

• Compute the Cartesian product of the sibling power sets and weights. Then add the end

leaves to get all the marginals for a feature.

• Evaluate the model on the unique power sets.

• Calculate the Winter values using the formula in 3.6

This formulation has several drawbacks. The biggest opportunity for improvement may be

that it doesn’t allow for top-down computation, early stopping, and parallelisation unlike the

binary tree implementation. This design choice also causes significant memory usage as the

product operation is costly for longer paths. Therefore, the clustering method is more efficient

for the usually deeper binary clustering trees.

There exist polynomial time algorithms for the general Winter values and similar hierarchi-

cal values Besner (2022). However, their formulation utilises sub-games. These sub-games are

induced from the original cooperative game played by players inside a coalition to allocate the

fraction of the payoff for their coalition from the level above. It is hard to formulate such anal-

ogous restricted models that only take into account certain features for a subsection of models’

output.
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Experiments

4.1 Coalitional tractability

We will showcase the tractability of Winter values and how they extend Shapley values and

the clustering PartitionExplainer. We will utilise some of the example notebooks of the SHAP

library. Specifically, we will use one large example the League of Legends Win Prediction with

XGBoost notebook in the SHAP library that showcases the TreeExplainer method on the Cam-

panelli (2017) dataset from Kaggle. And the previously discussed Simple California Demo. We

will show that the partition method is an extension of the hierarchical clustering method by

reproducing the results of the exact and clustering methods. Then we will show how the Winter

values represent coalitionally consistent explanations.

In the California notebook, the example model used is an XGBoost regression. We will

generate explanations for this model using the ExactExplainer, TreeExplainer, the Partition-

Explainer with the binary method, and the custom partition method.

17

https://github.com/shap/shap/blob/master/notebooks/tabular_examples/tree_based_models/League%20of%20Legends%20Win%20Prediction%20with%20XGBoost.ipynb
https://github.com/shap/shap/blob/master/notebooks/tabular_examples/tree_based_models/League%20of%20Legends%20Win%20Prediction%20with%20XGBoost.ipynb
https://www.kaggle.com/datasets/paololol/league-of-legends-ranked-matches
https://github.com/shap/shap/blob/master/notebooks/tabular_examples/model_agnostic/Simple%20California%20Demo.ipynb
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Figure 4.1: Levels structures of California housing features for our explanations

We will therefore generate explanations for the following levels structures of features in

Figure 4.1. Figure 4.1 shows the result of explanations for these hierarchies on the left using

the original SHAP methods, and the right using the custom partitions with our method. Our

expectation is that if the method we developed works, passing the tree structure used by the

ExactExplainer and PartitionExplainer the method returns the exact same explanations.
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(a) Using ExactExplainer, clustering PartitionEx-

plainer

(b) Using the custom partitions in PartitionEx-

plainer

We can see that the explanations from left to right match exactly and the explanations in

the second two rows by the Winter values are close to the exact Shapley values. In fact, the

Winter value explanations are closely approximating the exact Shapley values for most samples,

see Figure 4.2. Note for this model the TreeExplainer results perfectly approximate the exact

values.
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Figure 4.2: Explanations for 100 instances with each line corresponding to a feature.

To showcase how coalitional explanations can be considered more explainable and more use-

ful in many cases we look at the League of Legends Win Prediction with XGBoost notebook

as it has a larger feature space with 67 features for over 180-thousand matches in the game.

The example notebook uses an XGboost classification model. We complemented it with a sim-

ple 3-layer Multi-Layer-Preceptron(MLP) model using Pytorch to showcase the model-agnostic

nature of the explanation method. The model is too large to use the ExactExplainer without

resorting to sampling, therefore, we will use the KernelExplainer and the clustering method

PartitionExplainer. The levels structure we will be using is visualised in Figure 4.3.

https://github.com/shap/shap/blob/master/notebooks/tabular_examples/tree_based_models/League%20of%20Legends%20Win%20Prediction%20with%20XGBoost.ipynb
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Figure 4.3: Levels Structure used for the League of Legends dataset

To begin we examine the approximate Shapley values and clustering Winter values for the

XGB and the MLP models in Figure 4.4. We can see that a wide variety of features contribute

to the explanations for the different instances.

(a) XGB model

(b) MLP model

Figure 4.4: KernelExplainer explanations for 20 instances presented in the same order
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(a) XGB model

(b) MLP model

Figure 4.5: Clustering PartitionExplainer explanations for 20 instances presented in the same

order

The Winter values spread the influence of the marginals over the binary tree therefore we

end up with a lot of small feature attributions negating their usefulness for explanations. Most

importantly, plotting 69 features on any plot is not human interpretable.

(a) XGB model

(b) MLP model

Figure 4.6: Levels structure PartitionExplainer explanations for 20 instances presented in the

same order

In Figure 4.8 we can see that the Winter values for the levels structure return explanations

with more variation. Furthermore, comparing the KernelExplainer results we can see that the

explanations are more consistent, especially for the MLP model.
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(a) XGB model (b) MLP model

Figure 4.7: Levels structure PartitionExplainer explanations for instance 0

A more user-friendly way to plot feature attributions for the Winter values would be to

plot the coalition values. Importantly, these are values consistent with the levels structure

and therefore these explanations capture the interactions between these coalitions, disregarding

interactions not consistent with the coalitions.

(a) XGB model (b) MLP model

Figure 4.8: Top coalitions of the levels structure PartitionExplainer explanations for instance 0

4.2 Robustness to adversarial attacks

To test the robustness of the Winter values we used the experiments from Slack et al. (2020).

We will use two datasets used in the study. The COMPAS dataset of the criminal history and

demographics of defendants in Broward County, Florida Angwin et al. (2022). And the Ger-

man credit dataset from the UCI machine learning dataset of 1000 loan applications including

financial and demographic information Blake and Mertz (1999). To replicate the results of the

paper we used their Github repository upgrading the SHAP module and then testing the hi-

erarchical clustering and custom partition Winter value methods. Our hypothesis is that since

the Winter values are calculated by restricting the perturbations to those consistent with the

levels structure these are more likely to be closer to the original background distribution and

provide consistent explanations despite the scaffolding applied.
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We can easily replicate the findings of Slack et al. (2020). Their adversarial ”scaffolding”

successfully biases the explanations hiding the behaviour of the model.

Figure 4.9: 100 Explanations using the KernelExplainer for the biased and adversarial models

on the COMPAS dataset

In figure 4.9 we plotted explanations for 100 instances for the biased and the adversarial

model. The biased model makes its prediction entirely on the race feature, and this racism is

concealed by their method with several features getting larger SHAP values assigned by the

KernelExplainer method.

Figure 4.10: 100 Explanations using the clustering PartitionExplainer for the biased and ad-

versarial models on the COMPAS dataset
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Using the hierarchical clustering-based partition method we can however identify the bias

of the model despite the adversarial scaffolding 4.10. We do see large values attributed to some

other features such as the noise.

To see if a more interpretable levels structure may fit the base distribution better we defined

the following hierarchy Figure 4.11.

Figure 4.11: Example levels structure for the COMPAS dataset

Using this levels structure we indeed find that the bias of the model is detectable and the

unrelated features get smaller values assigned to them. We achieve similar results on the German

credit dataset with the custom partitions resulting in the most consistent explanations.
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Figure 4.12: 100 Explanations using the levels structure PartitionExplainer for the biased and

adversarial models on the COMPAS dataset

This example showcases the robustness of the PartitionExplainer for this particular adver-

sarial attack. This result however by no means guarantees the robustness of the PartitionEx-

plainer against attacks using different methods and further research is required to assess the

true robustness of this and other methods such as the GradientExplainer from SHAP.
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Conclusion

We have in this work examined how a solution concept from cooperative game theory Winter

values can be applied to explain machine learning models. We have done this by; defining the

various exact solution concepts currently implemented in one of the most popular XAI libraries

SHAP, and shown with illustrative examples how the Winter values extend these to models with

feature coalitions. Then we examined a restricted implementation of the Winter values by the

clustering PartitionExplainer, and developed a new implementation to calculate the Winter val-

ues for any levels structures of features. To test and showcase the uses of such methods we have

used a variety of models and datasets. As a result we saw that using custom levels structures

the Winter values closely approximate the Shapley values. They can be applied to models with

large feature spaces, are coalitionally consistent, and robust against some adversarial attacks

by using more salient perturbations.

The current work does have numerous limitations. First, the implementation of the Winter

values could be improved in several ways, such as adopting batching and parallel processing,

study into the time-complexities of different implementation and levels structures, and adoption

for different data modalities. These changes would allow to study the of Winter values for

explaining multi-modal and ensemble models. This extension is particularly interesting as it

would allow consistent masking for data types. Going further, it may be of interest to study the

different ways the levels structures can be constructed. Firstly, assessing the different distance

measures used by the clustering method for images for instance. Or to examine how linguistic

partonomies as intermediate concepts can be used to explain language models. There remains

further work on assessing the robustness of Winter value explanations to the other adversarial

attacks. As an exact method it is robust against attacks utilising the sampling process however

the limits to robustness of such game-theory based explanations is not well understood.
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Appendix

Figure A.1: 100 Explanations for models on the German credit data recreating results from

Slack et al. (2020)

28
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Figure A.2: 100 Explanations for models on the German credit data with the clustering Parti-

tionExplainer
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Figure A.3: 100 Explanations for models on the German credit data with a custom levels

structure in the PartitionExplainer
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Programs

Data: fm, f00, outputs

Result: winter values

Step 1: Initialize Tree Structure

root ← Node("Root");

build tree(partition tree, root);

Step 2: Generate all marginals for nodes

combinations list ← traverse tree and generate products(root);

masks, keys ← create masks(root, feature names);

masks dict ← map keys to masks(keys, masks);

unique masks ← get unique masks(masks dict);

Step 2: Evaluate Model on Unique Masks

mask results ← evaluate model on masks(fm, unique masks);

Step 3: Compute SHAP Values

winter values ← initialize winter values(len(fm));

mask mappings ← map combinations to masks(combinations list, masks dict,

unique masks);

foreach key in mask mappings do

off indexes, on indexes, weights ← mask mappings[key];

foreach off idx, on idx, weight in zip(off indexes, on indexes, weights) do

off result ← mask results[unique masks[off idx]];

on result ← mask results[unique masks[on idx]];

shap values[key] ← shap values[key] + (on result - off result) * weight;

end

end

Algorithm 1: Explain with Partition Tree
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Data: m00, f00, f11, ind, weight

Result: winter values

begin

if maximum evaluations are reached then

m00, f00, f11, ind, weight ← q.get()[2];

winter values[ind] += (f11 - f00) * weight;

break;

end

(lind, rind) ← get children(current node);

if get distance(current node) < 0 then

calculate the marginal;

winter values[ind] += (f11 - f00) * weight;

return;

end

(m10, m01) ← create masks(lind, rind);

f10 ← evaluate model(m10);

f01 ← evaluate model(m01);

new weight ← weight;

new weight /= 2

if fixed context is None or fixed context == 0 then

winter recursive(m00, f00, f10, lind, new weight);

winter recursive(m00, f00, f01, rind, new weight);

end

if fixed context is None or fixed context == 1 then

winter recursive(m01, f01, f11, lind, new weight);

winter recursive(m10, f10, f11, rind, new weight);

end

end

Algorithm 2: Winter Recursive
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